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Vortex structures in slab electron temperature gradient !ETG" driven turbulence are investigated by
means of a gyrokinetic simulation with high phase-space resolution. Depending on parameters that
determine the eigenfrequency of the linear ETG modes, two different flow structures, i.e.,
statistically steady turbulence with a weak zonal flow and coherent vortex streets along a strong
zonal flow, are observed. The former involves many isolated vortices and their mergers with
complicated motion and leads to steady electron heat transport. When the latter is formed, phase
difference and high wavenumber components of potential and temperature fluctuations are reduced,
and the electron heat transport decreases significantly. It is also found that the phase matching with
the potential fluctuation is correlated with the reduction in the imaginary part of the perturbed
distribution function, and it occurs not only for the temperature fluctuation but also for any nth
velocity moments. A traveling wave solution of a Hasegawa–Mima type equation derived from the
gyrokinetic equation with the ETG agrees well with the coherent vortex streets found in the slab
ETG turbulence. © 2010 American Institute of Physics. #doi:10.1063/1.3356048$

I. INTRODUCTION

Drift wave turbulence driven by microinstabilities such
as ion temperature gradient !ITG" modes, electron tempera-
ture gradient !ETG" modes, and trapped electron modes have
been extensively investigated by means of numerical simu-
lations based on gyrokinetic or gyrofluid models to elucidate
mechanisms of anomalous particle, heat, and momentum
transport in the core region of magnetically confined
plasmas.1,2 One of the remarkable results obtained by the
ITG turbulence simulations is spontaneous generation of
zonal flows, which regulate the turbulent transport through
shearing of radially elongated vortices.3 The transport reduc-
tion by zonal flows leads to the nonlinear up-shift in the
critical temperature gradient, which is larger than the linear
stability threshold !that is, so-called Dimits shift". The exis-
tence of ion-scale zonal flows has been experimentally re-
vealed by a direct measurement of electrostatic potential in
helical plasmas.4

In the ETG turbulence, the gyro-Bohm scaling for
Te=Ti predicts the smaller electron heat transport by a factor
of %me /mi than the ion heat transport driven by the ITG
turbulence. Many experimental observations, however, com-
monly indicate the strong anomaly of the electron heat trans-
port, which could be of the same order as the ion one, even
when the ion heat transport is reduced by the internal trans-
port barrier.5,6 Although the linear ETG modes with an adia-
batic ion response are isomorphic to the linear ITG modes
with an adiabatic electron response, the nonlinear evolution
of the ETG instability is quite different from that of the ITG
one. This is because the intensity of nonlinearly generated
zonal flows in the ETG turbulence is much lower than that in

the ITG turbulence due to the different responses to the
zonal-flow potential.7,8 In contrast to the ITG turbulence with
strong zonal flows, thus ETG turbulence involves various
vortex structures, e.g., turbulent vortices, zonal flows, and
radially elongated streamers, whose intensities depend on the
magnetic shear and other parameters.9 Recently, a number of
gyrokinetic simulations of the toroidal ETG turbulence have
been performed and benchmarked with various simulation
codes.10–13 Nevertheless, the saturation mechanism of the to-
roidal ETG instability under the strong magnetic shear and
the estimation of resultant transport level are still open prob-
lems. We believe that detailed analyses of the vortex struc-
tures and the velocity-space structures of the distribution
function are necessary for a better understanding of the ETG
driven turbulent transport.

Zonal-flow dynamics and the properties of large-scale
coherent vortex structures in the slab ETG turbulence have
also been discussed by means of gyrokinetic and gyrofluid
simulations.14–19 It has been pointed out that the weak mag-
netic shear is important for the zonal-flow generation, while
the positive magnetic shear leads to the streamer
formation.14,15 The scale length of zonal flow is characterized
by the Rhines scaling, which is proportional to the density
gradient scale length Ln, where the electron heat transport
decreases with increasing of Ln.16 The statistical analyses for
the ETG turbulence dominated by zonal flows reveal the
phase matching between potential and pressure fluctuations,
which is related to the reduction in the radial heat flux and
the fractal dimension of the turbulent fluctuations.17,18 It has
also been pointed out that in addition to the zonal flows, the
dynamics of nonlinearly excited long wavelength modes is
important for the saturation of the ETG instability and for the
regulation of the electron heat transport.19a"Electronic mail: nakata.motoki@nifs.ac.jp.
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In the present study, by means of the gyrokinetic Vlasov
simulations, we investigate vortex structures of the slab ETG
turbulence and velocity-space structures of the distribution
function in detail. The nonlinear gyrokinetic simulations with
high phase-space resolution shown below enable us to
examine the entropy balance relation in the slab ETG turbu-
lence with zonal-flow generation, while it has been investi-
gated for the collisionless and weakly collisional slab ITG
turbulence.20–23 Then, we discuss the role of zonal flows in
the statistically steady turbulence and the transition of vortex
structure from turbulent vortices to coherent vortex streets
accompanied with the significant reduction of the electron
heat transport. The transport reduction in the coherent state is
also studied from the viewpoint of structural change of the
perturbed distribution function in the velocity-space. In the
latter part of this paper, the coherent vortex streets found in
the nonlinear simulation are compared with a traveling wave
solution of a Hasegawa–Mima !HM" type equation.

The remainder of this paper is organized as follows.
Gyrokinetic models used in the present study are described
in Sec. II. Simulation results are presented in Sec. III, where
the statistically steady state with weak zonal flows in the slab
ETG turbulence is compared with that in the slab ITG turbu-
lence in Sec. III A. The spontaneous formation of the coher-
ent vortex streets and resultant transport reduction, which are
found in parameters different from those in Sec. III A, are
discussed in Sec. III B. The derivation of a fluid model de-
scribing the coherent vortex streets and the application to the
nonlinear simulation results are given in Secs. IV A and
IV B, respectively. Finally, the results obtained are summa-
rized in Sec. V.

II. GYROKINETIC MODEL

The electrostatic gyrokinetic equation24,25 for electron
gyrocenter distribution function Fe

!g"=Fe
!g"!x ,v! ,v& , t" in an

uniform magnetic field B=Bb is written as

#Fe
!g"

#t
+ v&b · !Fe

!g" +
c

B
b ! !'"!x + "e"(g · !Fe

!g"

+
e

me
b · !'"!x + "e"(g

#Fe
!g"

#v&

= 0, !1"

where x, "e, c, e, and me are the gyrocenter position, the
electron gyroradius vector, the speed of light, the elementary
charge, and the electron mass, respectively. The gyroaver-
aged electrostatic potential is denoted by '"!x+"e"(g,
where '¯ (g means the gyrophase average for a fixed
gyrocenter position. The total gyrocenter distribution func-
tion Fe

!g" is divided into equilibrium and perturbation parts:
Fe

!g"=F+#f !g". We assume that the former is given by the
Maxwellian distribution,

F = FM!x,v!,v&" = n0) me

2$Te
*3/2

exp)−
me!v!

2 + v&
2"

2Te
* ,

!2"

where n0 and Te denote the equilibrium density and the elec-
tron temperature. The perturbed distribution function and the

potential fluctuation are written in terms of the Fourier
expansions,

#f !g"!x,v!,v&,t" = +
k

#fk
!g"!v!,v&,t"eik·x, !3"

"!x + "e,t" = +
k

#"k!t"eik·!x+"e", !4"

where the equilibrium part of the potential is not con-
sidered here. In order to keep high resolution in the
real space and the v&-space, we assume that v!-dependence
of #fk

!g" is given by the Maxwellian distribution, i.e.,
#fk

!g"!v! ,v& , t"=FM!!v!"#fk!v& , t", where FM!,!me /2$Te"
!exp!−mev!

2 /2Te". The gradient scale lengths of the equilib-
rium density Ln,−!d ln n0 /dx"−1 and the equilibrium tem-
perature LT,−!d ln Te /dx"−1, which are much longer than
fluctuation wavelengths in the direction perpendicular to the
magnetic field %=2$ / -k!-, are set to be constant.

We consider a periodic two-dimensional slab configura-
tion where the plasma is assumed to be homogeneous in the
z-direction. The magnetic field B is set in the y-z plane such
that B=B!ez cos &+ey sin &".B!ez+&ey" for &'1, where
ey, ez, and & denote the basis vectors in the y- and
z-directions and the tilt angle of the field line, respectively.
Substituting Eqs. !2"–!4" into Eq. !1" and integrating over the
v!-space, one can obtain the gyrokinetic equation for the
perturbed distribution function #fk!v& , t" written in the wave-
number space as

) #

#t
+ ik&v&*#fk −

c

B +
k=k!+k"

b · !k! ! k""#(k!#fk" − C&!#fk"

= − i/)"e01 + *e)mev&
2

2Te
−

1
2

−
bk

2
*1 − k&v&2FM&

e#(k

Te
.

!5"

Here, k& ,k ·b.&ky is the parallel wavenumber !kz vanishes
because of the translational symmetry in the z-direction",
bk,k!

2 +te
2 is the square of the perpendicular wave-

number normalized by the electron thermal gyroradius
+te,vte /,e, where vte,!Te /me"1/2 and ,e,eB /mec are the
electron thermal speed and the electron gyrofrequency, re-
spectively. Inhomogeneities of n0 and Te in the x-direction
are taken into account through the electron drift frequency
)"e,−!cTe /eB"k ·b!! ln n0 and the parameter *e,Ln /LT.
The gyroaveraged potential integrated over the v!-space
is denoted by #(k,#"k exp!−bk /2", where the factor
exp!−bk /2" arises from the finite-Larmor-radius !FLR" ef-
fect. The Maxwellian distribution of v& is denoted by
FM& ,n0!me /2$Te"1/2 exp!−mev&

2 /2Te". In the derivation
of the above equation, the parallel nonlinearity
!e /me"b ·!'"!x+"e"(g##f !g" /#v& included in Eq. !1" is ne-
glected because of the gyrokinetic ordering k& /k!3+te /LT
'1. In order to maintain this ordering, the value of the tilt
angle & is expressed by the dimensionless parameter
-,k&LT /ky+te.&LT /+te.

In the present model, a weak but finite collisionality ef-
fect is introduced in terms of a model collision operator
C&!#fk" as follows:

042306-2 Nakata et al. Phys. Plasmas 17, 042306 "2010!

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



C&!#fk" = .e
#

#v&
)vte

2 #

#v&

+ v&*#fk. !6"

Here, .e denotes the electron collision frequency. The colli-
sion operator acting on #fk smooths out the fine-scale fluc-
tuations in the v&-space. Although the above collision opera-
tor does not conserve the momentum and the energy, its
influence on the main results shown below, such as the trans-
port level, are not crucial as long as .eLT /vte'1.21

The electrostatic potential is determined by the
quasineutrality condition #ne=#ni, where the Laplacian term
!2#" in the Poisson equation is neglected. Since the poten-
tial should be evaluated at the particle position, not at the
gyrocenter position, the distribution function should be trans-
formed from the gyrocenter coordinates to the particle ones.
The relation between the particle distribution function #fk

!p"

and the gyrocenter distribution function #fk
!g" is given by

#fsk
!p" = #fsk

!g"e−ik·"s −
es#"k

Ts
#1 − J0!k!"s"e−ik·"s$FMs, !7"

where the subscript s represents particle species #s= 4i ,e5 for
ions and electrons$ so that es has a sign of the electric
charge for each species and J0!z" is the zeroth-order Bessel
function. The last group of terms on the right-hand side rep-
resents the polarization due to the potential fluctuations. By
taking the velocity-space integral of Eq. !7" for electrons,
one can obtain the electron density fluctuation in the particle
coordinates

#nek =6 dv/#fek
!g"e−ik·"e +

e#"k

Te
#1 − J0!k!"e"e−ik·"e$FMe2

= e−bek/26 dv&#fek + n0
e#"k

Te
#1 − /0!bek"$ , !8"

where /0 is defined by /0!z", I0!z"exp!−z" with the zeroth-
order modified Bessel function I0!z". Similarly, the ion par-
ticle density fluctuation is given as

#nik = e−bik/26 dv&#f ik − n0
e#"k

Ti
#1 − /0!bik"$

. − n0
e#"k

Ti
!k!+ti 0 1" . !9"

Since the characteristic wavelength in the ETG turbulence,
which is comparable to the electron gyroradius, is much
shorter than the ion gyroradius, i.e., k!+ti01, the ion re-
sponse to the potential fluctuation reduces to the adiabatic
one as shown in the last equality of Eq. !9". Combining Eqs.
!8" and !9", the quasineutrality condition #ne=#ni with the
adiabatic ion response is rewritten as

6 dv&#fek = − ebek/2/1 +
Te

Ti
− /!bek"2n0

e#"k

Te
. !10"

In ITG turbulence simulations, the electron response is often
assumed to be adiabatic except for the zonal-flow component
of k& =ky =0. The electron response in ITG turbulence is de-
noted by #ne=n0e!#"− ''#"((" /Te, while the ion response in
the ETG turbulence is given by Eq. !9", where ''¯ (( means

a flux surface average. The physical pictures of the responses
to the zonal-flow potential in ITG and ETG turbulence are
quite different. In the ITG turbulence, electrons do not re-
spond to the zonal-flow potential, i.e., #nek&=0=0, because the
parallel electric field E& vanishes for the mode of k& =0. On
the other hand, ions in the ETG turbulence can move in the
perpendicular direction because of the large ion gyroradius,
i.e., k!+ti01 even if E& =0. As a result of the different re-
sponses of ions and electrons to the zonal-flow potential, the
relative intensity of the zonal flow in the ETG turbulence is
lower than that in the ITG turbulence.3

From the closed set of equations described in Eqs. !5"
and !10", one can derive a balance equation with respect to
the entropy variable #S,SM− 'Sm(, where '¯ ( means the
ensemble average.26,27 The macroscopic and the microscopic
entropy per unit volume are defined by SM

,−7dvFM ln FM and Sm,−7dvFe
!g" ln Fe

!g", respectively.
Then, one finds

#S = SM − 'Sm( . 6 dv8 #f !g"2

2FM
9 = +

k
6 dv&

-#fk-2

2FM&

, !11"

which is correct to O!#f !g"2". Here, we assume the turbulent
fluctuations to be statistically homogeneous in space. Thus,
the ensemble average is replaced by the spatial average in the
last equality of Eq. !11". Taking the v&-space integral and the
summation over k in Eq. !5" multiplied by #fk

" /FM& !where
the asterisk denotes the complex conjugate", one can obtain
the entropy balance equation,

d

dt
!#S + W" = Qe + D , !12"

by use of Eq. !10". The quantities W, Qe, and D denote the
potential energy, the electron heat flux, and the collisional
dissipation, respectively. The definitions are as follows:

W = +
k

Wk = +
k

n0

2
)1 +

Te

Ti
− /0!bk"*: e#"k

Te
:2

, !13"

Qe =
q!e

Te
· !− ! ln Te"

= +
k

c

B

d ln Te

dx
Re0iky#(k6 dv&)mev&

2

2Te
−

1
2
*#fk

"1
= n0)d ln Te

dx
*2

+
k

1ek, !14"

D = +
k
6 dv&C&!#fk"

#fk
"

FM&

, !15"

where q!e denotes the electron perpendicular heat flux due to
the E!B convection. The electron heat transport coefficient
is defined by 1e=+k1ek=q!e ·ex / !n0Te /LT", where ex denotes
the basis vector in the x-direction. The production, transfer,
and dissipation processes of #S have been thoroughly inves-
tigated for the slab ITG turbulence.21 The entropy variable
#S is generated by the turbulent heat transport Qe in macrov-
elocity scale; then it cascades to microvelocity scale through
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the phase mixing process caused by the parallel advection
term ik&v&#fk in Eq. !5". Finally, the entropy variable is dis-
sipated by the collision in the microvelocity scale. The en-
tropy balance relation also provides us a good measure for
the accuracy of the nonlinear simulation.

In the followings, physical quantities are normalized as
x=x! /+te, y=y! /+te, v& =v&! /vte, t= t!vte /LT, .e=.e!LT /vte,
FM& =FM&! vte /n0, #fk=#fk!LTvte /+ten0, and #"k=e#"k!
!LT /Te+te, where the prime means a dimensional quantity.
In the numerical simulations, time integrations are carried
out by the fourth-order Runge–Kutta–Gill method with ap-
propriate time step. The nonlinear advection term is calcu-
lated by means of the spectral method with 3/2-rule for the
dealiasing in the wavenumber space. In order to keep high
phase-space resolution, our code is parallelized with respect
to the v&-coordinates, and the fourth-order central finite dif-
ference methods are used for evaluating the velocity-space
derivatives in the collision operator. The nonlinear simula-
tions have been carried out for two cases which have differ-
ent dimensionless parameters *e and -. The detailed
simulation conditions for each parameter are given in the
Sec. III A.

III. NONLINEAR SIMULATIONS

A. Physical and numerical parameters

Physical and numerical parameters for nonlinear simula-
tions of the slab ETG turbulence are summarized below.
We consider two sets of the physical parameters 4*e=6, -
=1 /65 !case 1" and 4*e=10, -=1 /205 !case 2". The linear
growth rate 2L and real frequency )L for the two cases are
plotted for ky in Fig. 1. Here, we set kx=0 because the finite
kx has a stabilizing effect. It is found that case 2 has rela-

tively lower real frequencies, larger growth rates, and a
wider range of the unstable modes than case 1. The param-
eters used for nonlinear simulations are summarized in Table
I. Here, sufficiently small collision frequency .e, which does
not affect the linear growth rates and the real frequencies, is
introduced in both cases. Also, we set 3,Te /Ti=1. The
number of modes in the wavenumber space and the mini-
mum and maximum wavenumbers are set to be !Nkx

,Nky
"

= !129,257", kmin=0.05, and kmax=6.4, respectively. The
range of v&-coordinates is -v&-4vmax=10. Furthermore, the
simulation domain is set to be a square with Lx=Ly
=40$+te. In the ITG turbulence, as will be discussed in Sec.
III B, the parameters are the same as those in the slab ETG
turbulence of case 1, except for the use of the ion thermal
gyroradius +ti on the normalizations.

B. Steady turbulence and zonal flows

Simulation results for case 1 as well as the comparison
between slab ETG and ITG turbulence are shown and dis-
cussed below. Time evolution of each term in Eq. !12", i.e.,
d!#S" /dt, dW /dt, Qe, and D is plotted in Fig. 2. It is con-
firmed that the entropy balance relation described in Eq. !12"
is accurately satisfied within an error less than 1% with re-
spect to the amplitude of the collisional dissipation. In the
nonlinear phase !t5700", one can find a statistically steady
state in the entropy balance, where the mean heat transport
balances with the mean collisional dissipation, namely,
Qe.−D̄, while d!#S" /dt.dW /dt.0 !the overline denotes
the time average for t51000". The statistically steady state
of slab ITG turbulence was confirmed by Watanabe and
Sugama,21 where the zonal-flow components of the distribu-
tion function were not included for studying the entropy bal-
ance with strong ion heat transport. The present simulation
demonstrates that the similar steady state with finite electron
heat transport exists in the slab ETG turbulence including
zonal flows self-consistently.

The time evolutions of the heat transport coefficients 1s
are shown in Fig. 3, where s denotes the particle species.
Here, 1e,nz and 1e represent the results without and with the
zonal-flow generation, respectively. In the former case, the

TABLE I. Parameters used for nonlinear simulations.

*e - v&-grids 2L,max .e

Case 1 6 1/6 1025 0.021 2.08!10−4

Case 2 10 1/20 2049 0.037 1.25!10−4

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
wavenumber ky

γL in Case 1
ωL/5 in Case 1

γL in Case 2
ωL/5 in Case 2

FIG. 1. Growth rates 2L and real frequencies )L of the linear ETG modes
for kx=0 in case 1 !*e=6, -=1 /6" and case 2 !*e=10, -=1 /20".

-0.1

0

0.1

0.2

0 2000 4000 6000 8000
Time t

dδS/dt
dW/dt

Qe
D

FIG. 2. Time evolution of each term in Eq. !12", d!#S" /dt, dW /dt, Qe, and
D in case 1.
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zonal-flow components of the perturbed distribution function
#fkx,ky=0 are artificially neglected. In addition, a slab ITG case
with the zonal-flow generation is also plotted as 1i in the
figure. The saturation levels of the transport coefficients are
1e,nz=1.34!10−1#+te

2 vte /LT$, 1e=4.65!10−2#+te
2 vte /LT$, and

1i=4.36!10−5#+ti
2vti /LT$, respectively, where they are evalu-

ated by taking the time average for 60004 t48000. We find
a quite small ratio of saturation levels 1i /1e.9.38%mi /me
!10−4.0.04. This is because the zonal flow driven by the
slab ITG turbulence is much stronger than that driven by the
slab ETG turbulence due to the difference in the response to
the zonal-flow potential #"kx,ky=0 as described in Sec. II.
Also, in the present slab configuration with the constant
magnetic field, the zonal-flow damping due to the neoclassi-
cal polarization is not included. Therefore, the strong zonal
flow is driven by the slab ITG turbulence and sustained for a
long time. The time evolution of 1e,nz indicates the higher
level and the slow time-variation, while the value of 1e
reaches to the steady state. The averaged value 1e,nz is about
2.9 times larger than 1e. These results suggest that the weak
but finite zonal flows driven by the slab ETG turbulence play
a major role in regulating the slow time-variation and in
realizing the steady transport.

Comparisons of the cases with and without zonal flows
provide us a clear understanding of the role of the zonal flow
in regulating the turbulent transport. Figures 4!a"–4!c" show
the wavenumber spectra of the potential energy Wkx,ky=0,
Wkx=0,ky

#see Eq. !13"$ and the transport coefficient -1ekx=0,ky
-

#see Eq. !14"$, respectively, where the amplitudes are aver-
aged over 30004 t45000. In Fig. 4!b", one can see a much
larger amplitude of the !kx=0, ky =kmin=0.05"-mode com-
pared to the other modes in the case without zonal flows,
while its amplitude significantly decreases by a factor of
about 30 in the case with zonal flows. A similar reduction is
also found for -1ekx=0,ky=kmin

- in Fig. 4!c". The correlation be-
tween Wk and -1ek- indicates that the high level of 1e,nz with
the slow time-variation shown in Fig. 3 is mainly caused by
low-k modes, where the !kx=0, ky =kmin"-mode makes the
largest contribution to the heat transport. The zonal flows

with finite amplitudes shown in Fig. 4!a" suppress the low-k
modes and reduce the transport level. Also, the contribution
of -1ekx=0,ky=kmin

- to the total 1e, that is, 27% in the case with-
out zonal flows, decreases to 7% in the case with zonal
flows. The reduction in the amplitudes of low-k modes by
zonal flows lead to the steady 1e.

The different evolutions of turbulent transport and the
role of the zonal flow discussed above are also understood
from the comparison of vortex structures. Color contours of
the electrostatic potential fluctuations on the !x ,y"-plane at
t=4980 are shown in Figs. 5!a"–5!c" for the above three
cases #!a" ETG without zonal flows, !b" ETG with zonal
flows, and !c" ITG with zonal flows$, respectively. In Fig.
5!a", one can see the formation of isolated vortices with the
positive and the negative signs of the potential values. The

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000
Time t

χe,nz
χe
χi

FIG. 3. Time evolutions of the transport coefficients 1e,nz !ETG without
zonal flows", 1e !ETG with zonal flows", and 1i !ITG with zonal flows",
where the gyro-Bohm units +ts

2 vts /LT!s=e , i" are used.

10−4

10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1
wavenumber ky

(c) |χekx=0,ky
|(w/ ZF)

|χekx=0,ky
|(w/o ZF)

10−4

10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1
wavenumber ky

(b) Wkx=0,ky(w/ ZF)
Wkx=0,ky(w/o ZF)

10−4

10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1
wavenumber kx

(a) Wkx,ky=0(w/ ZF)

FIG. 4. The wavenumber spectra of the potential energy !a" Wkx,ky=0, !b"
Wkx=0,ky

, and the transport coefficient !c" -1ekx=0,ky
- in the cases with and

without zonal flows, where the amplitudes are averaged over 30004 t
45000. The units !+te /LT"2!Te /e"2 and +te

2 vte /LT are used for Wk and 1ek,
respectively.
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size and amplitude of each vortex are typically 6vortex
.8#+te$ and -#"-vortex.18#+teTe /LTe$, respectively. In addi-
tion, the !kx=0, ky =kmin"-mode, which makes a dominant
contribution to the heat transport, is clearly observed behind
the isolated vortices. The isolated vortices are also observed

in Fig. 5!b", where the typical size and amplitude of each
vortex are slightly smaller than those found in the case with-
out zonal flows. However, the !kx=0, ky =kmin"-mode no
longer appears in the present case because it is suppressed by
the zonal flows with finite amplitudes. Also, the isolated vor-
tices exhibit the complicated motion and their mergers.
Mergers of like-signed vortices have also been observed in
the two-dimensional decaying plasma turbulence with HM
model !see, for example, Refs. 16 and 28". In the present
case, the zeroth velocity moment of the gyrokinetic equation
used here includes the similar nonlinearity to that in the HM
equation, which is derived from Eqs. !5" and !10" in the
limits of k& =0 and k!+te'1. Thus, it is considered that the
formation of the isolated vortices and their mergers found in
the slab ETG turbulence reflect the similarities between the
gyrokinetic and the HM equations. In the ITG case with the
zonal-flow generation #Fig. 5!c"$, an anisotropic flow struc-
ture dominated by the strong zonal flow !kx.0.4, ky =0" is
observed, where the amplitude of the zonal-flow potential is
-#"-zonal.2#+tiTi /LTe$. The slab ITG driven zonal flows with
the large amplitude and its strong flow shear completely sup-
press the turbulent transport.

C. Transition of vortex structure and transport
reduction

Here, we discuss the results of the slab ETG turbulence
simulation in case 2, which is linearly more unstable in com-
parison with case 1. The entropy balance relation is also
satisfied in the present case. However, we find quite different
behavior of the electron heat flux and the vortex structures as
shown below.

Figure 6 shows the time evolutions of electron heat
transport coefficients for case 1 and case 2. As the linear
dispersion relation for case 2 shows the larger growth rate
and the wider range of unstable modes than those in case 1,
one finds earlier saturation and higher transport level at
t43000. In case 2, however, a transition of vortex structure,
which will be shown in Fig. 8, occurs from a turbulent to a
coherent states accompanied with the significant reduction of
transport level at t33500. In contrast, case 1 keeps the

FIG. 5. !Color online" Contours of the normalized potential fluctuations at
t=4980 in !a" ETG without zonal flows, !b" ETG with zonal flows, and !c"
ITG with zonal flows.
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FIG. 6. Comparison of the time evolutions of the transport coefficients 1e in
case 1 and case 2, where the gyro-Bohm units +te

2 vte /LT are used.
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steady transport level of 1e=4.65!10−2#+te
2 vte /LT$ for

t56000. The time averaged heat transport coefficients for
case 2 in the turbulent and coherent states are summarized in
Table II. Surprisingly, the transport level in the coherent state
of case 2 is about 2.6 times less than the steady transport
level in case 1 with a relatively moderate growth rates of the
linear ETG modes. The reversal of transport level between
case 1 and case 2 is expected from neither quasilinear theory
nor mixing-length estimates. Since zonal flows play a major
role in realizing the steady 1e as shown in Fig. 3, we con-
sider that the onset of the transition of the transport level also
depends on the zonal-flow amplitude.

Comparisons of the time evolutions of the potential en-
ergy for case 1 and case 2 are shown in Figs. 7!a" and 7!b",
where the total potential energy W in Eq. !13" is divided
into zonal flow and turbulence components defined by
Wzf,+kx

Wkx,ky=0 and Wtrb,+kx
+ky$0Wkx,ky

, respectively. In
Fig. 7!a", we see that the turbulence energy Wtrb in the both
cases gradually increase after the initial saturation of the
ETG instability; then they reach to steady states at t55200.
The time averaged values are Wtrb=8.99#!+te /LT"2!Te /e"2$
for case 1 and Wtrb=12.6#!+te /LT"2!Te /e"2$ for case 2, re-
spectively, where the time averages are taken for 52004 t
48000. Evolutions of the zonal-flow energy Wzf are quite
different between case 1 and case 2 as shown in Fig. 7!b". In

case 1, the nonlinearly generated zonal flows increase expo-
nentially at t4810. After that, the zonal-flow energy,
however, decays quickly and keeps a steady level of
Wzf=0.428#!+te /LT"2!Te /e"2$, where the time averages are
taken for 60004 t48000. In contrast to case 1, the zonal-
flow energy for case 2 continue to increase gradually until
t32700. Finally, it sustains about 3.2 times higher level of
Wzf=1.36#!+te /LT"2!Te /e"2$ than in case 1. The higher level
of the zonal-flow energy found in case 2 is associated with
the stronger linear ETG instability, causing the higher level
of turbulence energy that is a source of zonal flows. Further-
more, the smaller value of the parameter - !=k& /ky", which
denotes the normalized parallel wavenumber, may also be
related to the stronger zonal-flow generation. The different
behaviors of the zonal-flow energy between case 1 and case
2 lead to the different evolutions of 1e with the steady level
or the transport reduction, as shown in Fig. 6.

Figures 8!a"–8!d" show color contours of potential and
temperature fluctuations found in case 2 in the turbulent
state at t=2400 and the coherent state at t=7800, respec-
tively, where the temperature fluctuations are defined by
#Tk=7dv&!v&

2−1"#fk. In the turbulent state, the spatial struc-
tures of the both fluctuations are nearly isotropic on the x-y
plane #Figs. 8!a" and 8!c"$. Moreover, the temperature fluc-
tuations contain finer spatial-scale components than those in
the potential fluctuations. The generation of the fine-scale
fluctuations reflects development of the fine-scale structures
of the distribution function in the phase-space. On the other
hand, in the coherent state, vortex streets along the strong
zonal flow are observed in the potential and temperature
fluctuations #Figs. 8!b" and 8!d"$, which are almost in-phase.
A low wavenumber mode with kx=0.05 and ky =0.15 and the
zonal-flow component with kx=0.15 and ky =0 mainly con-
tribute to the formation of coherent vortex streets, where
they have the comparable amplitude of -#"kx=0.05,ky=0.15-
=0.664#!+te /LT"!Te /e"$ and -#"kx=0.15,ky=0-=0.598#!+te /LT"
!!Te /e"$. The coherent vortex streets slowly propagate in
the ion diamagnetic direction !the negative y-direction",
which is opposite to the propagation direction of the linear
ETG modes. Moreover, the fine-scale structures of tempera-
ture fluctuations disappear in the coherent state, while the
amplitude is as large as that in the turbulent state.

In order to find a relation between the transition of vor-
tex structure and transport level, the power spectra of #"k,
#Tk, and 1ek are shown in Figs. 9!a"–9!c", respectively,
where the quantities are summed over kx components and the
time averages are taken for 10004 t43000 in the turbulent
state and for 60004 t48000 in the coherent state. The low
wavenumber components of -#"ky

- for ky 40.2 in the coher-
ent state are slightly larger than those in the turbulent state,
while the higher wavenumber components for ky 50.25 sig-
nificantly decrease by a factor of 3–10. On the other hand,
the amplitude of -#Tky

- for all ky in the coherent state is less
than that in the turbulent state, where the reduction in high
wavenumber components for ky 51.0 is significant. These
features are consistent with the coherent structures shown in
Figs. 8!b" and 8!d", where the fine-scale fluctuations in #"
and #T are smoothed out. It is noteworthy that the low wave-

TABLE II. Time averaged heat transport coefficients in case 2.

1e#+te
2 vte /LT$ Averaging time

Turbulent state 3.37!10−1 10004 t43000

Coherent state 1.77!10−2 60004 t48000
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FIG. 7. Time evolutions of !a" turbulence energy Wtrb and !b" zonal-flow
energy Wzf in case 1 and case 2, where the units !+te /LT"2!Te /e"2 are used.
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number components of -1ek- around ky =0.1, which make
dominant contributions to the total heat transport, decrease
by a factor of 15.9 in the coherent state, while the changes in
amplitudes of low wavenumber components of -#"ky

- and
-#Tky

- are within a factor of 3. The above results for case 2
suggest that the transport reduction in the coherent state is
mainly associated with a decrease in phase difference be-
tween #"k and #Tk rather than the reduction in fluctuation
amplitudes. Indeed, the transport coefficient 1ek can be ex-
pressed as #see Eq. !14"$

1ek = − e−bk/2ky-#"k-26 dv&!v&
2 − 1"Im0 #fk

#"k
1

= − e−bk/2ky-#"k-2 Im0 #Tk

#"k
1 , !16"

where normalized quantities are used here. The above equa-
tion shows that the transport coefficient is proportional to the
squared amplitude -#"k-2 and the imaginary part of the dis-
tribution function !or temperature fluctuation" divided by the
potential fluctuation Im##fk /#"k$ 4or Im##Tk /#"k$5. In gen-

eral, the phase difference 6&k between two Fourier modes Xk
and Yk is given by 6&k=sin−1!Im#Yk /Xk$". Thus, velocity
moments of the quantity Im##fk /#"k$ are related to the
phase difference between potential fluctuations and other
fluid variables. The reduction in the phase difference be-
tween potential and pressure fluctuations in the coherent vor-
tex structures dominated by zonal flows has also been ob-
served in gyrofluid simulations of sheared-slab ETG
turbulence with small magnetic shear parameter ŝ=0.1.17,18

In the present gyrokinetic simulation study, the transition
of vortex structure from a turbulent to a coherent state, which
is accompanied with the reduction in the phase difference
between #" and #T, is related to velocity-space structures of
the perturbed distribution function or, especially, to its imagi-
nary part. Figure 10 shows velocity-space profiles of the
quantity −Im##fk /#"k$ in Eq. !16". Here, the solid and
dashed lines correspond to the results in turbulent and coher-
ent states, respectively, where the modes giving the dominant
contribution to the heat transport !kx=0, ky =0.1" are plot-
ted. The linear eigenfunction is also shown by the dotted line
in the figure, where a scale factor of 1/2 is multiplied. One

FIG. 8. !Color online" Contours of normalized potential fluctuations at !a" t=2400 !turbulent state" and !b" t=7800 !coherent state" and normalized
temperature fluctuations at !c" t=2400 !turbulent state" and !d" t=7800 !coherent state" for case 2.
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can see that the profile in turbulent state is qualitatively simi-
lar to the linear eigenfunction, which can drive large heat
transport. In contrast, the significant decrease in
−Im##fk /#"k$ is found in the coherent state, which is related
to the transport reduction. The decrease in −Im##fk /#"k$

corresponds to the phase matching of #" and #T, and it is
consistent with the spatial structures shown in Figs. 8!b" and
8!d". Furthermore, the smaller value of −Im##fk /#"k$ in the
coherent state suggests that the reduction in phase difference
to potential fluctuations #"k is found not only for tempera-
ture fluctuations #Tk but also for any nth velocity moments
of the perturbed distribution function #Mk

!n",7dv&v&
n#fk.

This fact is utilized for a derivation of a model equation
describing the coherent vortex streets.

The results of nonlinear simulations suggest that the on-
set of the transition to the coherent state and the formation of
vortex streets, which are accompanied with the phase
matching phenomena, is closely related to the behavior of
zonal flows. It depends on the parameters *e,Ln /LT and
-,k& /ky, which determine the linear ETG instability in the
present model with the fixed .e and 3,Ti /Te. In particular,
the parameter -, which is relevant to the parallel electron
flows, is considered to be influential on the growth of zonal
flows through nonlinear mode couplings with k&$0 modes.
It has also been pointed out that the parallel electron flows
are essential to the stabilization of the Kelvin–Helmholtz
modes for zonal flows.15 A comprehensive parameter-scan
remains for a future work to clarify which parameters are
favorable for the strong zonal-flow generation and the forma-
tion of the coherent vortex structures. These analyses are
expected to contribute to finding a critical condition for the
transition of vortex structures from turbulent to coherent
states with transport reduction and may provide ones a useful
insight in relation to the chaos-or turbulence-control. In fact,
by means of the Hasegawa–Wakatani model, Klinger et al.29

pointed out that an externally applied perturbation of the
parallel flow leads to the transition from the drift wave tur-
bulence to a coherent state.

The simple shear-less slab configuration with constant -
used in the present study is associated with a local model for
the neighborhood of the minimum-q surface !q denotes the
safety factor", which has a weak magnetic shear ŝ'1, in the
toroidal system with a reversed magnetic shear profile.5,6 In
the case with a weak magnetic shear, each position of the
rational surface becomes more distant, and the toroidal-mode
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couplings weaken so that the slab ETG modes can also be
destabilized. Actually, the global gyrokinetic PIC simulations
of the slab ETG turbulence for the reversed magnetic shear
profile have found out the strong zonal-flow generation and
the significant reduction in the electron heat transport around
the minimum-q surface where the ŝ vanishes.15 Extension of
the present work to toroidal configurations will be pursued to
explore the possibility of the coherent vortex structure for-
mation and the transport reduction under realistic conditions.

IV. ANALYSIS OF COHERENT VORTEX STREETS

A. HM type model for coherent vortex streets

Here, we derive a model equation by which the coherent
vortex streets shown in the previous section can be de-
scribed. It can also be utilized for the detailed comparison
with nonlinear simulation results.

Main features of the coherent vortex streets with signifi-
cantly low transport level found in the previous section are
summarized as follows. First, the spatial profile of #" mainly
consists of large-scale vortices and zonal flows with compa-
rable amplitudes #see Fig. 8!b"$. Second, the propagating di-
rection of these vortices is opposite to that of the linear ETG
modes. Third, the phase matching occurs between the poten-
tial fluctuation #"k and the fluctuations #Mk

!n" defined by the
nth velocity moments of the perturbed distribution function.
These features allow us to derive a fluid equation for the
coherent vortex streets. By taking the v&-space integral of
gyrokinetic equation in Eq. !6" and by use of the quasineu-
trality condition in Eq. !11", one can obtain the following
equation:

#

#t
7k#(k − iky)1 −

bk

2
*e*#(k

− +
k=k!+k"

b · !k! ! k""#(k!7k"#(k" = 0, !17"

which is formally similar to the HM equation written in the
wavenumber space. Here, the moment of parallel advection
term 7dv&ik&v&#fk !=ik&u&", which causes the linear ETG in-
stability through a coupling with higher order moments, is
neglected for simplicity because it is relatively smaller
than the other terms in the coherent state. The validity for
neglecting the parallel advection term will be discussed in
Sec. IV B. The FLR-factor is denoted by 7k,ebk41+3
−/0!bk"5. Normalizations are the same as shown in Sec. II,
except that the macroscopic gradient scale length is changed
from LT into Ln for comparison with the original HM equa-
tion. The original HM model is derived from fluid equations
for cold ions !Ti→0" with the adiabatic electron response;
then the model describes the density gradient driven drift
waves. In contrast to the original HM model, Eq. !17" is
derived from the gyrokinetic equation for electrons with the
adiabatic ion response and includes the ETG *e described by
iky!bk*e /2"#(k, which does not appeared in the cold-electron
limit !Te→0". Hereafter, an abbreviation for our model in
Eq. !17" is denoted by “HM-*e model” for convenience.
Similarly to the original HM model, the HM-*e model also
has no source driving linear instabilities.

Figure 11 shows the comparison of real frequencies for
kx=0 between the linear ETG mode described by the gyro-
kinetic model and linear drift waves described by the HM-*e
model. The real frequency for the HM-*e model is given by

)L =
− e−bkky

1 + 3− /0!bk")1 −
*e

2
bk* . !18"

We see that the real frequencies in HM-*e model have nega-
tive values for the low wavenumber modes of ky 4%2 /*e
.0.447, while the ETG modes have positive real frequencies
for all modes. The negative frequency means that the direc-
tion of the mode propagation is opposite to that of the linear
ETG modes. Indeed, as described in the previous section, the
coherent vortex streets propagate in the negative y-direction.

In the long wavelength limit of k!+te'1, Eq. !17" is
represented in the real space as follows:

#

#t
43 − !1 + 3"!!

2 5#( −
#

#y
)1 +

*e

2
!!

2 *#(

− ##(,!1 + 3"!!
2 #($ = 0, !19"

where the square brackets denote the Poisson brackets
#A ,B$= !#xA"!#yB"− !#xB"!#yA". An isomorphic form to the
original HM equation, which has an opposite sign of the drift
frequency, is derived by taking a cold-electron limit Te→0
and *e→0. In analogy with the HM model having a travel-
ing wave solution,30 e.g., isolated dipole vortices, one can
derive a condition for the traveling wave solution of the
HM-*e equation in the long wavelength limit. Suppose the
potential fluctuation in #(=#(!x ,y−ut" in Eq. !19" with
constant traveling velocity parameter u; then the time
derivative is replaced with the y-derivative, #t#(=−u#y#(
= #−ux ,#($. After some simple algebra, one finds the follow-
ing equation:
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FIG. 11. Comparison of the real frequencies )L!kx=0,ky" between the linear
ETG modes and HM-*e model, where )L is normalized by vte /Ln.
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#S1,S2$ , 0!!
2 #( − )1 + 3u

1 + 3
*x, #( − /u −

*e

2!1 + 3"2x1 = 0.

!20"

This condition shows that #( is a traveling wave solution of
the HM-*e equation if there is a functional relation between
S1 and S2, i.e., S1=F!S2" with an arbitrary function F. The
analysis of the functional dependence on S1 and S2 is similar
to that demonstrated in two-dimensional rotating fluid turbu-
lence by Jung and Morrison et al.31 They introduced a
method of averaging the stream function that allows them to
find the linear functional relation of the generalized vorticity
and the stream function clearly. In the present study, we in-
vestigate the functional relation between S1 and S2 as a mea-
sure for characterizing the coherent vortex streets to be a
traveling wave solution of the HM-*e equation.

B. Comparison between HM-#e model and simulation
results

In this section, the coherent vortex streets found in the
gyrokinetic simulation for case 2 is compared with the trav-
eling wave solution of HM-*e equation. In order to confirm
the validity for neglecting the parallel advection term in the
derivation of HM-*e model in Eq. !17" #or Eq. !19"$ for the
coherent vortex streets, we compare gyrokinetic simulation
results for cases with and without the parallel advection term
ikv&#fk. Figure 12 shows the time evolution of 1e, where the
solid line is the same as that shown in Fig. 6 for case 2. The
dotted line corresponds to the result where the parallel ad-
vection term is artificially eliminated in the coherent state at
t=8000 and later. Although the initial increase in 1e arisen
from the discontinuity of the parallel advection term are ob-
served for 80004 t410 000, the long-time behavior of 1e
for t510 000 shows the quite low transport level, which
is the same level as that in the coherent state at around
t=8000 shown by the solid line.

Snapshots of vortex structures for the cases with and
without the parallel advection term are compared in Figs.
13!a" and 13!b", respectively, where the gyroaveraged poten-

tials #( are plotted by color contours. In Fig. 13!b", one finds
that the vortex streets found in the coherent state at t=7800
#Fig. 13!a"$ sustain its spatial structure for a long time after
eliminating the parallel advection term. Also, the vortices
propagate in the negative y-direction, which is consistent
with the negative real frequency for low wavenumber modes
of the HM-*e model. These results justify neglecting the
parallel advection term in the derivation of HM-*e model for
the coherent vortex streets. In addition, the propagation of
the vortices keeping the spatial structure suggests that the
coherent vortex streets are described by a traveling wave
solution of Eq. !19".

Direct evaluations of the functional relation of S1 and S2
in Eq. !20" are shown in Figs. 14!a" and 14!b" for the non-
linear simulation results in case 2, where the traveling veloc-
ity parameter u.−$ /4 is estimated from the simulation re-
sults. Here, we used simulation data taken from +3$4x
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FIG. 12. Comparison of the time evolutions of 1e with and without the
parallel advection term.

FIG. 13. !Color online" Contours of the gyroaveraged potential with the
parallel advection term at !a" t=7800 and without one at !b" t=16 000.
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4+15$ #see Fig. 13!a"$ for the single vortex street on the
right side of simulation domain because the vortices on the
left side propagate with slightly different speed. The punc-
ture plots of S1 versus S2 in the turbulent !t=2400" and co-
herent !t=7800" states are shown in Fig. 14!a". A nonlinear
functional relation between S1 and S2 is clearly found in the
coherent state, while the dot pattern broadens and looks dis-
turbed in the turbulent state. The same plots are made for the
simulation without the parallel advection term, which corre-
sponds to a simulation of HM-*e model #Fig. 14!b"$. One
can see that the nonlinear functional relation, which is simi-
lar to that in the coherent state shown in Fig. 14!a", is appar-
ently sustained for a long time. The puncture plot for the
coherent state in Fig. 14!a" clearly shows the qualitative
agreement with that in Fig. 14!b" even with a stronger cur-
vature in the functional relation between S1 and S2. There-
fore, it is concluded that the coherent vortex streets found in
the slab ETG turbulence for case 2, which leads to the trans-
port reduction, are described by a traveling wave solution of
the HM-*e equation.

V. CONCLUDING REMARKS

We have investigated the vortex structure and related
transport reduction in the slab ETG turbulence by means of
the gyrokinetic Vlasov simulation. The nonlinear simulations
with high phase-space resolution enable us to examine the
entropy balance relation, detailed structures of distribution
function in the velocity-space, and coherent vortex structures
of fluid variables, e.g., potential and temperature fluctua-
tions, which have rarely been discussed in earlier studies on
ETG turbulence.

The evaluation of entropy balance relation in the slab
ETG turbulence with a moderate linear growth rate !case 1"
shows that the turbulence reaches to the statistically steady
state accompanied with weak zonal-flow generations.
Through the comparison of the slab ETG !with and without
zonal flows" and the slab ITG turbulence simulations, it is
found that the zonal flows driven by the slab ETG turbulence
play a crucial role in suppressing the !kx=0, ky =kmin"-mode
and in realizing the steady 1e. The formation of isolated vor-
tices and their mergers with complicated motion are ob-
served in the slab ETG turbulence, while the slab ITG tur-
bulence is dominated by strong zonal flows, which
completely suppress the turbulent transport.

In the slab ETG turbulence with larger growth rates
!case 2", we observed a transition of the vortex structure
from a turbulent state with finer-scale fluctuations to a coher-
ent state dominated by coherent vortex streets, which are
composed of large-scale vortices and strong zonal flows. At
the same time, the turbulent transport reduces to a quite low
level, which is less than the time averaged 1e in case 1. The
spectral analysis of -#"k-, -#Tk-, and -1ek- in the wavenumber
space shows that the transport reduction in the coherent state
is mainly associated with a decrease in phase difference be-
tween #"k and #Tk, not with the reduction in the amplitudes.
The transport reduction through the phase matching is con-
firmed more clearly by the velocity-space plots of
−Im##fk /#"k$. The amplitude of −Im##fk /#"k$ is quite
small in the coherent state, while its profile in the turbulent
state is qualitatively similar to the linear eigenfunction,
which drives large heat transport. Furthermore, the smallness
of −Im##fk /#"k$ in the coherent state shows that the phase
matching with #"k occurs not only for #Tk but also for any
nth velocity moments of the perturbed distribution function,
i.e., #Mk

!n",7dv&v&
n#fk.

In order to describe the coherent vortex streets, we have
derived a fluid model from the gyrokinetic equation, where
the velocity moment of the parallel advection term
7dv&ik&v&#fk is ignored. The validity of neglecting the paral-
lel advection term in the derivation has been confirmed by
comparisons of the nonlinear simulations. In addition to a
formal similarity to the original HM equation, the HM-*e
model derived in Eq. !19" involves the ETG term. By evalu-
ating the functional relation of S1 and S2 #see Eq. !20"$ from
the nonlinear simulation results, it is concluded that the co-
herent vortex streets found in the slab ETG turbulence,
which are related to the transport reduction, are explained by
a traveling wave solution of HM-*e equation.

It is considered that the formation of coherent structures
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FIG. 14. !Color online" Puncture plots for S1 vs S2 given in Eq. !20", where
the plots correspond to the cases !a" with and !b" without the parallel ad-
vection term, respectively.
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such as vortex streets is strongly related to the behavior of
zonal flows, which depend on parameters *e and -. The
parameter - related to the parallel electron dynamics is also
expected to be important for the zonal-flow generation and
its stability. In order to clarify which parameters are favor-
able for the formation of the coherent vortex structures and
the transport reduction, one needs to perform a comprehen-
sive parameter scan, which remains for future works. Al-
though the simple shearless slab configuration has been used
in the present study, it is considered to be associated with a
local model for a weak magnetic shear region in the toroidal
system. Extension of the present work to the toroidal
configuration is currently in progress and will be reported
elsewhere.
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